Monitorovací systém do stojanu rack 19"

H3531R H4531R H7531R

Monitorování teploty, vlhkosti, barometrického tlaku, binárních vstupů a dalších vlhkostních veličin s připojením na Ethernet.

Návod k použití

Obsah

1.	OBECNÁ BEZPEČNOSTNÍ OPATŘENÍ	4
2.	VŠEOBECNÝ POPIS	5
3.	MONTÁŽ A PŘIPOJENÍ MONITOROVACÍHO SYSTÉMU	6
4.	PŘÍPRAVA K PROVOZU	8
4.1.	Postup při zapojení přístroje	8
5.	ROZMĚROVÝ NÁČRT	9
6.	INSTALACE	10
6.1.	POSTUP PŘI INSTALACI MONITOROVACÍHO SYSTÉMU	10
7.	PROVĚŘENÍ ČINNOSTI	11
7.1. 7.2.	VIZUÁLNÍ KONTROLA Kontrola komunikace po LAN	11
8.	POPIS FUNKCÍ A NASTAVENÍ	12
8.1. 8.2. 8.3. 8.4. 8.4.1. 8.4.2.	RELÉOVÉ VÝSTUPY BINÁRNÍ VSTUPY AKTUÁLNÍ NASTAVENÍ MONITOROVACÍHO SYSTÉMU – MĚŘÍCÍ ČÁST ZMĚNA NASTAVENÍ MONITOROVACÍHO SYSTÉMU – MĚŘÍCÍ ČÁST Změna nastavení pomocí PC a programu TSensor Změna nastavení pomocí klávesnice přístroje	12 12 12 14 14 14
8.4.3. 8.5. 8.6. 8.7. 8.7.	Rozšířené nastavení – nastavovací mód OBNOVA "NASTAVENÍ MONITOROVACÍHO SYSTÉMU OD VÝROBCE" – MĚŘÍCÍ ČA NASTAVENÍ MONITOROVACÍHO SYSTÉMU – ETHERNETOVÁ ČÁST ALARMY – ETHERNETOVÁ ČÁST	15 ÁST.19 19 19 19
8.7.2.	Binární veličiny	
8.8.	TOVÁRNÍ NASTAVENÍ – ETHERNETOVÁ ČÁST	21
9.	KOMUNIKAČNÍ PROTOKOLY	22
 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. 	MODBUS SMTP SNMPv1 WWW SNTP SYSLOG PROTOKOL SOAP	
10.	CO DĚLAT KDYŽ	
10.1. 10.2. 10.3. 10.4.	ZAPOMNĚL JSEM IP ADRESU MONITOROVACÍHO SYSTÉMU Nemohu se připojit k monitorovacímu systému Nesvítí displej Chybové stavy monitorovacího systému	26 26 26 26
11.	ZOBRAZENÍ NA LCD DISPLEJI	

12.	PREVENTIVNÍ ÚDRŽBA	
13.	TECHNICKÁ SPECIFIKACE	
13.1.	TECHNICKÉ PARAMETRY PŘÍSTROJE	
13.1.1.	Společné parametry	
13.1.2.	Přesnost, rozsah a rozlišení monitorovacích systémů	
13.1.3.	Veličiny počítané z měřené teploty a vlhkosti	
13.2.	PROVOZNÍ PODMÍNKY	
13.3.	VYŘAZENÍ Z PROVOZU	
13.4.	TECHNICKÁ PODPORA A SERVIS PŘÍSTROJE	
14.	PŘÍLOHA A	
15.	PŘÍLOHA B	

Označení Hxxxx**Z** je vyhrazeno pro všechny nestandardní varianty přístrojů. Popis odlišností v jejich provedení není součástí tohoto návodu.

Copyright: COMET System, s.r.o. Tento návod k obsluze je zakázáno kopírovat a provádět v něm změny jakékoliv povahy bez výslovného souhlasu firmy COMET System, s.r.o. Všechna práva vyhrazena.

Firma COMET System, s.r.o. provádí neustálý vývoj a vylepšování svých produktů. Proto si vyhrazuje právo provést technické změny na zařízení/výrobku bez předchozího upozornění.

1. Obecná bezpečnostní opatření

Následující přehled opatření slouží ke snížení nebezpečí úrazu nebo zničení popisovaného přístroje. Aby se předešlo úrazům, používejte přístroj podle pokynů uvedených v této příručce.

Servis by měla vykonávat pouze kvalifikovaná osoba.

Používejte vhodný síťový adaptér.

Používejte pouze adaptér s napájecím napětím doporučeným výrobcem a schválený podle příslušných norem. Dbejte na to, aby adaptér neměl poškozené kabely nebo kryt.

Připojujte a odpojujte správně.

Nepřipojujte ani neodpojujte LAN kabel nebo přívodní kabely, pokud je zařízení pod elektrickým napětím.

Nepoužívejte přístroj bez krytů.

Nepoužívejte přístroj, nepracuje-li správně.

Jestliže máte dojem, že přístroj nepracuje správně, nechte jej zkontrolovat kvalifikovaným servisním pracovníkem.

Nepoužívejte přístroj ve výbušném prostředí.

Před uvedením přístroje do provozu si podrobně přečtěte celý návod.

2. Všeobecný popis

Monitorovací systémy řady Hx531R do stojanu rack 19" jsou podle provedení určeny k online monitorování: teploty ve °C nebo °F, relativní vlhkosti vzduchu bez agresivních látek, atmosférického tlaku a tří binárních vstupů pro detekci dvoustavových veličin. Měřená teplota a relativní vlhkost je přepočítávána na další vyjádření vlhkosti - teplotu rosného bodu, absolutní vlhkost, měrnou vlhkost, směšovací poměr a specifickou entalpii. Přístroj umožňuje nastavit korekci na nadmořskou výšku (offset) a zvolit jednotky zobrazení tlaku: hPa, kPa, mbar, mmHg, inHg, inH2O, PSI, oz/in2. Přístroj je vybaven dvěma výstupy na kontakty relé pro signalizaci alarmu nebo řízení externích zařízení. Každému relé lze přiřadit libovolnou vstupní veličinu, nastavit komparační mez, zpoždění, hysterezi či akustický alarm, případně jeho stav vzdáleně ovládat pomocí komunikačního protokolu Modbus. Ke komunikaci s přístrojem slouží ethernetové rozhraní. Přístroj je vnitřně rozdělen do dvou bloků: První obstarává měření a obsluhu výstupních relé – tyto parametry je možno nastavovat přímo z klávesnice přístroje nebo programu TSensor. Druhý blok zajišťuje veškeré Ethernetové služby, jeho konfigurace je možná pomocí "Telnetu" nebo programu TSensor (toto nastavení není možno měnit přes klávesnici přístroje).

Тур	Teplota	Vlhkost	Tlak	Počítaná veličina	Binární vstup
H3531R	✓	\checkmark		\checkmark	3x
H4531R */	✓				3x
H7531R	✓	✓	✓	\checkmark	3x

*/ typ H4531R je určen k dvouvodičovému připojení externí teplotní sondy Pt1000/3850 ppm.

Měřené hodnoty lze vyčíst z displeje, nebo je lze číst a poté zpracovat v PC přes ethernetové rozhraní. V případě zobrazení více hodnot na dvouřádkovém displeji se hodnoty přepínají. Podporované formáty Ethernetové komunikace jsou:

- WWW stránky s možností vlastního přizpůsobení vzhledu
- Modbus protokol
- SNMPv1 protokol
- SOAP

Přístroj lze využít i ke kontrole naměřených hodnot, a v případě překročení uživatelem nastavených mezí je možné poslat varovnou zprávu na uživatelem zvolené místa. Možné způsoby předání varovných zpráv jsou:

- zaslání e-mailů na max. 3 e-mailové adresy
- vyslání SNMP trapu na max. 3 IP adresy
- zobrazení stavu alarmu na WWW stránce
- zasílání zpráv na Syslog server

Meze alarmů je možné nastavovat přes nastavovací program TSensor a protokoly Modbus, Telnet nebo SNMPv1. Přes WWW stránky přístroje, Modbus nebo SNMPv1 lze tyto údaje vyčíst.

Nastavení přiřazené veličiny k relé je možné provést pomocí programu TSensor nebo pomocí klávesnice na přístroji.

Pro napájení po Ethernetu je nutno použít jakýkoli externí PoE splitter - např. D-Link DWL-P50. Samotné zařízení PoE nepodporuje!

Zařízení podporuje Internet protokol verze 4 (IPv6 není podporován).

3. Montáž a připojení monitorovacího systému

Přístroje jsou určeny pro montáž do stojanu rack 19" (montážní šrouby a samopřídržné matice jsou součástí dodávky). Na zadním panelu je zdířka pro napájecí konektor, 24 pólová patice pro konektor s připojením CAGE CLAMP (je součástí dodávky, svorky se rozevírají tlakem šroubováku na pružný kontakt) a připojení k Ethernetové síti konektorem RJ-45. Rovněž je na svorkovnici vyvedeno napájecí napětí +12V a +5V pro napájení externích senzorů a detektorů. Popis připojovacích míst je na obrázku.

Vlhkostní sondu se nedoporučuje dlouhodobě provozovat v prostředí ve stavu kondenzace. V tomto případě může dojít ke zkondenzování vodních par pod krytkou senzorů do kapalné fáze, přičemž takto vzniklá voda snadno neprostoupí filtračním materiálem krytky ven a zůstane uvnitř. Důsledkem je výrazné prodloužení doby odezvy na změnu vlhkosti a při větším množství zkondenzované vody může při dlouhodobé expozici dojít k poškození senzoru. Obdobné chování může nastat v prostředí s vodním aerosolem. Externí teplotní sonda připojitelná k přístroji H4531R musí být v provedení "stíněný dvouvodič". Délka kabelu sondy a jeho průřez ovlivňuje přesnost měření. Pokud připojené sondy jsou opatřeny kovovým stonkem, doporučujeme používat takové provedení, kdy stonek není vodivě spojen se stíněním kabelu. V opačném případě je nutno zajistit, aby stonek nebyl vodivě spojen s žádnými jinými obvody.

Na binární vstup může být připojen beznapěťový kontakt nebo externí napětí – viz obrázek.

Maximální délka kabelů pro připojení binárních vstupů a externí teplotní sondy (H4531R) je 10 m. Stínění se připojuje na odpovídající svorku a nesmí se již dále spojovat s žádnými jinými obvody ani jinak uzemňovat.

Pro uložení všech kabelů platí, že musí být umístěny co možná nejdále od potenciálních zdrojů rušení.

Přistroj je osazen typem relé, které není určeno pro přímé spínání výkonových obvodů či síťového napětí. V takových případech použijeme vhodný typ výkonového relé v zapojení dle Přílohy A s cívkou vyhovující specifikaci reléového výstupu.

K monitorovacím systémům řady Hx531R je možné připojit další volitelné příslušenství (viz <u>www.cometsystem.cz</u>). Způsob připojení je uveden v Příloze B.

Elektrickou instalaci a zapojení smí provádět pouze pracovník s požadovanou kvalifikací dle platných norem.

4. Příprava k provozu

Aby bylo možné využívat všechny funkce přístrojů řady Hx531R, je nutné je nastavit pomocí PC tak, aby vyhovovaly Vašim potřebám. K uvedení do provozu potřebujete:

- napájecí adaptér 12 VDC
- volnou RJ-45 LAN přípojku
- volnou IP adresu ve Vaší síti
- v případě převodníku H4531R je potřeba připojit Pt1000 teplotní sondu

Pro zjištění volné IP adresy kontaktujte správce sítě

Upozornění! Spolehlivost doručení varovných hlášení (e-mail, SNMP trap) závisí na aktuální dostupnosti potřebných síťových služeb. Doporučujeme zařízení zabezpečit před neautorizovaným zásahem neoprávněné osoby do zapojení a nastavení (manipulace s napájením či ethernetovým kabelem, změnou hranic alarmů a pod.).

4.1. Postup při zapojení přístroje

Napájecí adaptér, kabely a sondu přístroje Hx531R připojte v pořadí, jak je uvedeno na obrázcích. Po připojení napájení nakonfigurujte přístroj.

Připojení H3531R a H7531R

PoE adaptér

5. Rozměrový náčrt

6. Instalace

Po prvním připojení je potřeba na monitorovacím systému nastavit novou IP adresu tak, aby nekolidovala s již existující IP adresou ve vaší síti. Pokud instalujete více nových přístrojů, připojujte je do sítě postupně, vždy až po nastavení předchozího! V případě, že neznáte vhodnou IP adresu, kontaktujte vašeho síťového administrátora a vyžádejte si od něj následující údaje:

IP adresa brány	IP adresa přístroje	
Maska sítě	IP adresa brány	
	Maska sítě	

IP adresy brány a maska sítě nemusí být zadány, pokud chcete přístroj provozovat pouze v lokální síti. Pokud nastavíte IP adresu na stejnou, jaká je již v síti používána, nebude monitorovací systém správně fungovat a bude docházet ke kolizím na LAN síti. Přístroj může svou IP adresu získat také pomocí DHCP serveru.

Nastavení z výroby:

IP adresa přístroje:	192.168.1.213
Gateway:	nenastavena
Veličina přiřazená k rele1, rele2:	žádná
Heslo pro přístup z klávesnice (PASS):	0000
Heslo pro ovládání přes TSensor:	žádné
Veličina zobrazená na 1. řádku:	teplota (teplota/tlak)
Veličina zobrazená na 2. řádku:	relativní vlhkost/teplota rosného bodu
Jednotka teploty:	°C
Jednotka tlaku:	hPa
Korekce na nadmořskou výšku:	0 hPa (absolutní tlak)
Přednastavená počítaná veličina:	teplota rosného bodu
Reakce relé na chybový stav:	zůstat v původním stavu
Signalizace stavu binárních vstupů:	LED dioda svítí, je-li vstupní kontakt
	rozpojen
Akustický alarm:	vypnut

6.1. Postup při instalaci monitorovacího systému

- spusťte program TSensor (výrobní IP adresa přístroje je 192.168.1.213) nebo do příkazového řádku na PC zadejte "telnet 192.168.1.213 9999". Telnet umožňuje nastavení všech Ethernetových voleb, pro nastavení chování vlastního přístroje a výstupních relé použijte klávesnici viz. kapitola **8.4**.
- nastavte novou IP adresu systému
- nakonfigurujte monitorovací systém podle vlastních potřeb (nastavte alarmy, zobrazované jednotky, odesílání e-mailů, trapů...)
- uložte nastavení

7. Prověření činnosti

7.1. Vizuální kontrola

Po připojení se na displeji přístroje zobrazí aktuální měřené hodnoty (není-li displej vypnut). Po zasunutí ethernetového kabelu se na konektoru rozsvítí kontrolka.

7.2. Kontrola komunikace po LAN

Otevřete prohlížeč WWW stránek a do kolonky adresa zadejte IP adresu monitorovacího systému.

Příklad: http://192.168.1.213

Přístroj zobrazí svůj název, sériové číslo, naměřené hodnoty, stavy alarmů a nastavení alarmů, nebo zobrazí zprávu Access denied v případě, že zobrazování WWW stránek není povoleno nebo je právě prováděno nastavení přístroje pomocí "Telnetu".

8. Popis funkcí a nastavení

Informace z monitorovacího systému můžete vyčíst pomocí některého z následujících protokolů, nebo je odečíst z displeje. Ke komunikaci pomocí některých protokolů (SNMPv1, Modbus, SOAP) je potřeba mít na PC nainstalovaný software pracující s příslušným protokolem. Tento software není součástí dodávky. Přístroj je vnitřně rozdělen do dvou bloků: První obstarává měření a obsluhu výstupních relé – tyto parametry je možno nastavovat přímo z klávesnice přístroje nebo programu TSensor. Druhý blok zajišťuje veškeré Ethernetové služby, jeho konfigurace je možná pomocí programu TSensor nebo "Telnetu" (toto nastavení není možno měnit přes klávesnici přístroje).

8.1. Reléové výstupy

Přístroj je vybaven dvěmi výstupními relé. Každému z nich je možné přiřadit jednu z měřených veličin nebo "vzdálené ovládání relé", nastavit mez alarmového stavu, má-li relé sepnout je-li tato hodnota větší (HI) nebo menší (Lo) než zadaná mez, dobu zpoždění, po kterou musí být podmínka platná než dojde k sepnutí a hysterezi s jakou se relé vrátí do původního stavu. Pro binární vstup platí, že je-li nastaveno "HI", pak výstupní relé sepne při rozpojení vstupního kontaktu, je-li nastaveno "Lo", pak výstupní relé sepne při spojení vstupního kontaktu. Stav sepnutého výstupního relé je signalizován LED diodou a na displeji se zobrazí odpovídající popis "ALARM 1", "ALARM 2".

8.2. Binární vstupy

Přístroj umožňuje vyhodnocovat stavy ze tří binárních vstupů. Na vstup může být připojen beznapěťový kontakt nebo externí napájecí napětí. Signalizace stavu binárních vstupů je provedena pomocí tří LED diod umístěných nalevo od displeje. Zelená LED signalizuje stav binárního vstupu 1, oranžová stav vstupu 2 a červená stav vstupu 3. Pro konfiguraci binárních vstupů slouží DIP přepínače 1 až 3, které jsou přístupné na zadním panelu přístroje. Přepínač DIP1 je pro kanál BIN1, DIP2 pro BIN2 a DIP3 pro BIN3. Je-li odpovídající DIP přepínač v poloze ON, potom je binární vstup nakonfigurován jako "napěťový vstup", tzn. bez připojení externího signálu je čten stav "0", po připojení externího napětí je stav vstupu čten jako "1" (toto nastavení je vhodné např. pro volitelné příslušenství "Detektor výpadku napájení SP008"). Je-li odpovídající DIP přepínač v připojení externího signálu je čten stav poloze OFF, potom je binární vstup nakonfigurován jako "terv výpadku napájení SP008"). Je-li odpovídající DIP přepínač v poloze OFF, potom je binární vstup nakonfigurován jako "beznapěťový kontakt", tzn. v případě, že ke vstupu není připojen žádný vstupní signál (je rozpojen), je stav vstupu čten jako "1", při spojení vstupních svorek kontaktem je stav vstupu čten jako "0".

Pro každý binární vstup je možno pomoci nastavovacího SW TSensor nastavit stav indikační LED diody, má-li svítit ve stavu "spojeno" nebo "rozpojeno". Stav binárního vstupu může být také přiřazen některému z výstupních relé s tím, že je možné zvolit, má li výstupní relé sepnout nebo rozepnout při spojení/rozpojení binárního vstupu. Vstupy nejsou galvanicky odděleny.

8.3. Aktuální nastavení monitorovacího systému – měřící část

V této části se neprovádí nastavení Ethernetových služeb, jejich nastavení viz. kapitola 8.6.

Pokud jsou prováděna konfigurace alarmových podmínek pro relé pomocí protokolu Modbus, je klávesnice po dobu konfigurace blokována. V tu dobu je zobrazen nápis "bloc" na displeji.

Nastavení je možné zobrazit na displeji přístroje stiskem tlačítka "▲". Na displeji se postupně zobrazí informace o nastavení nejprve pro relé1, potom pro relé2. Informace o relé1 jsou ALARM 1 ", informace o relé2 signalizovány nápisem isou signalizovány nápisem "ALÁRM 2" (v pravém horním rohu displeje). Zobrazené parametry je možné upravovat po stisku tlačítka "SET" a zadání hesla pro přístup k nastavení "PASS" - viz. 8.4.2. Uvedené příklady jsou pro nastavení Relé1, obdobně se zobrazí údaje o nastavení Relé2. Opuštění informačního režimu je možné stiskem tlačítka "ESC", případně po 20s nečinnosti přístroj sám přepne na zobrazení aktuálních hodnot.

8.4. Změna nastavení monitorovacího systému – měřící část

8.4.1. Změna nastavení pomocí PC a programu TSensor

Uživatelský program Tsensor, který je možno zdarma získat na adrese www.cometsystem.cz, slouží pro nastavení všech parametrů přístroje. Při použití tohoto programu se řiď te jeho pokyny. Přístroj má ochranu proti náhodnému přepisu nastavení (netýká se Ethernetové části, v té je možná ochrana heslem), zápis nového nastavení je možný pouze tehdy, je-li:

- po dobu zápisu stisknuto tlačítko "SET" v programu TSensor nastavte požadované 1. parametry, stiskněte a držte na přístroji tlačítko "SET", klikněte na "Save Changes" a po dokončení zápisu tlačítko "SET" uvolněte nebo
- je-li DIP přepínač č.4 v poloze ON přístupný na zadním panelu přístroje, tato jeho poloha je 2. indikována na LCD displeji malým symbolem 3 na levé straně LCD. V tomto případě může být nové nastavení měřicí části zapsáno. Po ukončení nastavování DIP přepínač č4 opět přepněte do polohy OFF (ochrana nastavení proti přepsání pomocí SW)

Program také umožňuje provádět justování přístroje, postup je popsán v samostatném souboru "Manuál pro kalibraci.pdf", který je součástí instalace programu.

8.4.2. Změna nastavení pomocí klávesnice přístroje

Při zobrazení "Aktuálního nastavení" je možné stiskem tlačítka "SET" a po zadání hesla pro přístup k nastavení "PASS", vstoupit do nastavovacího režimu a požadovanou hodnotu změnit. Při zadávání hodnoty se stále testuje, je-li zadávané číslo v platném rozsahu pro danou veličinu. Dojdeli k překročení min (max) hodnoty rozsahu, nastavovaná hodnota se automaticky nahradí min (max) možnou hodnotou pro danou veličinu – rozsahy viz kapitola "Technické parametry přístroje". Při zadávání se hodnota mění pomocí tlačítek "▲" a "▼" v "kruhu" -9, -8, -7, …-2, -1, 0, 1, 2, …8, 9. Na další pozici v nastavovaném čísle se přesunete stiskem tlačítka "SET", zpět se můžete vrátit stiskem tlačítka "ESC". Zadání hodnoty se potvrdí opětovným stiskem tlačítka "SET", případně je možné změnu nastavení zrušit stiskem tlačítka "ESC". V okamžiku, kdy jednou zadáte platné přístupové heslo, můžete provádět další změnu v nastavení ostatních položek v menu už bez jeho opětovného zadávání a to až do okamžiku, než opustíte zobrazení aktuálního nastavení (než se opět zobrazí měřené hodnoty). Při novém vstupu do nastavovacího režimu je nutné opět zadat přístupové heslo. Přístupové heslo je od výrobce nastaveno na 0000, jeho změna je možná v "Rozšířeném nastavení". V tomto režimu není činnost monitorovacího systému omezena, provedené změny v nastavení jsou ihned po uložení platné – při uložení změny nastavení automaticky dochází k restartu Ethernetové části zařízení.

8.4.3. Rozšířené nastavení – nastavovací mód

Za provozu je možné pomocí klávesnice měnit pouze parametry přístupné v "Aktuálním nastavení monitorovacího systému". Pro přístup k ostatním parametrům slouží "Nastavovací mód". V "Nastavovacím módu" přístroj neprovádí žádné měření ani nevyhodnocuje stavy reléových výstupů a není možná komunikace. Pro návrat z "Nastavovacího módu" stiskněte tlačítko "ESC" a přepněte DIP spínač č.4 do polohy OFF.

Pro vstup do "Nastavovacího módu":

- 1. vypněte napájení přístroje
- 2. na zadním panelu přístroje přepněte DIP spínač č.4 do polohy ON (tato jeho poloha je indikována na LCD displeji malým symbolem 3 na levé straně LCD)
- 3. stiskněte současně tlačítka "▲" a "▼" (držte stisknuté)
- 4. připojte napájecí napětí monitorovacího systému na displeji přístroje se zobrazí nápis "SEL" a pod ním číslo verze Firmware zařízení (např. 0404)
- 5. uvolněte tlačítka "▲" a "▼" vstoupili jste do "Rozšířeného nastavení"

Pomocí tlačítek "▲" a "◄" můžete procházet jednotlivé položky, v případě že některou chcete změnit, stiskněte tlačítko "SET", položka začne blikat. Nyní můžete pomocí "▲" a "◄" nastavení měnit. Uložení se provede stiskem tlačítka "SET". Stiskem tlačítka "ESC" se opustí nastavení BEZ uložení nastavované hodnoty – zůstane zachována původní hodnota.

Přiřazení akustického alarmu k relé1

akustická signalizace od Relél je vypnutá

Přiřazení akustického alarmu k relé2

akustická signalizace od Relé2 je vypnutá

Způsobu deaktivace akustického alarmu

spuštěný akustický alarmu je možno deaktivovat stiskem tlačítka "ESC"

při sepnutí Relél zapne i akustická signalizace

R	IJ	ď	ARM 1
E	п	R	Ь

při sepnutí Relé2 zapne i akustická signalizace

R	IJ			2
E	n	R	Ь	

akustický alarm je zapnut po celou dobu trvání alarmu a nelze jej zrušit

Ь	E	R	ARM 1 2	
5	F		L	

Reakce na chybový stav

Přístroj průběžně kontroluje stav měřených veličin, v případě zjištění chyby měření pro veličinu přiřazenou k relé1 (relé2) se:

jeho stav nezmění, zůstane

jeho stav nezmění, zůstane v původním stavu

relé2 vypne

relé1 zapne

Změna hesla pro přístup k nastavení (PASS)

Zobrazí aktuálně uložené přístupové heslo, po stisku klávesy "SET" je možné provést jeho změnu, je to číslo v rozsahu -19999 až +19999.

nastavení hesla

Signalizace stavu binárních vstupů

Signalizace stavu binárních vstupů je provedena pomocí třech LED diod. Nastavení slouží k volbě stavu binárního vstupu, ve kterém má LED dioda svítit – je-li vstupní kontakt rozpojen (OPEN) nebo spojen (CLOSED)

LED svítí, je-li rozpojen

Volba jednotky teploty

Přístroj umožňuje měření teploty v °C nebo °F, zde se zobrazí nastavená jednotka, po stisku tlačítka "SET" je možné nastavení změnit.

nastaveny °C

٥٢	٥Ļ
	<u>ן</u> ס

nastaveny °F		
٥	lot	
	οŗ	

LED svítí, je-li spojen

р і п

[]

Volba jednotky tlaku

Přístroj umožňuje měření barometrického tlaku v hPa, PSI, inHg, mBar, oz/in², mmHg, inH₂O a kPa, zde se zobrazí nastavená jednotka, po stisku tlačítka "SET" je možné nastavení změnit.

Nastavení korekce na nadmořskou výšku

V případě, že potřebujeme získat hodnotu barometrického tlaku přepočtenou na hladinu moře, přístroj umožňuje nastavit hodnotu tlakové korekce v závislosti na nadmořské výšce. Tato hodnota se pak automaticky připočitává k měřené hodnotě. Nastavení je možné po stisku tlačítka "SET".

tlaková korekce

rozsah nastavení korekce na nadmořskou výšku

-25,0 až 650,0 hPa -0,363 až 9,427 PSI -0,74 až 9,19 inHg -25,0 až 650,0 mBar -5,8 až 150,8 oz/in² -18,8 až 487,5 mmHg -10,0 až 261,0 inH₂O -2,5 až 65 kPa

Zobrazení teploty na LCD

Umožňuje zvolit, má-li se měřená teplota zobrazovat na LCD displeji přístroje, po stisku tlačítka "SET" je možné nastavení změnit.

zobrazení na LCD displeji zapnuto

Zobrazení relativní vlhkosti na LCD

Umožňuje zvolit, má-li se měřená relativní vlhkost zobrazovat na LCD displeji přístroje, po stisku tlačítka "SET" je možné nastavení změnit.

zobrazení na LCD displeji zapnuto

zobrazení na LCD displeji vypnuto

zobrazení na LCD displeji vypnuto

4066

Zobrazení počítané veličiny na LCD

Umožňuje zvolit, má-li se počítaná veličina zobrazovat na LCD displeji přístroje, na horním řádku se zobrazí název odpovídající přednastavené počítané veličině – viz volba počítané veličiny. Po stisku tlačítka "SET" je možné nastavení změnit.

zobrazení na LCD displeji zapnuto

Zobrazení barometrického tlaku na LCD

Umožňuje zvolit, má-li se měřený barometrický tlak zobrazovat na LCD displeji přístroje, po stisku tlačítka "SET" je možné nastavení změnit.

zobrazení na LCD displeji zapnuto

Volba počítané veličiny

Zobrazí se název aktuálně nastavené počítané veličiny. Po stisku tlačítka "SET" je možné provést změnu. Přístroj umožňuje zvolit si jednu z následujících veličin počítaných z měřené teploty a relativní vlhkosti:

teplota rosného bodu (*dew point temperature*) absolutní vlhkost (absolute humidity) směšovací poměr (mixing ratio) měrná vlhkost (specific humidity)

specifická entalpie (specific enthalpy)

zobrazení na LCD displeji vypnuto

zobrazení na LCD displeji vypnuto

PrES d0FF

žné nastavení změnit. *Papnuto*

8.5. Obnova "nastavení monitorovacího systému od výrobce" – měřící část

Tato volba umožňuje obnovení nastavení přístroje na hodnoty nastavené od výrobce. Po stisku tlačítka "SET" zvolte "YES" a potvrďte opět stiskem "SET". Tím se změní nastavení těchto parametrů přístroje:

Veličina přiřazená k rele1, rele2:	žádná
Heslo pro nastavení z klávesnice (PASS):	0000
Displej:	zapnut
Jednotka teploty:	°C
Jednotka tlaku:	hPa
Korekce na nadmořskou výšku:	0 hPa (absolutní tlak)
Přednastavená počítaná veličina:	teplota rosného bodu
Reakce relé na chybový stav:	zůstat v původním stavu
Signalizace stavu binárních vstupů:	LED dioda svítí, je-li vstupní kontakt
	rozpojen
Akustický alarm:	vypnut

obnova nastavení přístroje od výrobce

d	E	F
	П	0

d	E	F	
Ч	E	5	

8.6. Nastavení monitorovacího systému – Ethernetová část

Nastavení se provádí prostřednictvím programu TSensor, nebo "Telnetu"¹. Podporný popis nastavení přístroje pomocí telnetu lze nalézt v samostatném dokumentu. Nastavení je možné chránit heslem. Program s dokumentem naleznete na instalačním CD nebo na <u>www.cometsystem.cz</u> v sekci programy. Program je ke stažení zdarma, umožňuje také aktualizaci firmware přístroje, který je rovněž ke stažení na těchto stránkách.

8.7. Alarmy – Ethernetová část

8.7.1. Analogové veličiny

Každé z měřených veličin lze nastavit horní mez, dolní mez, hysterezi a zpoždění. Na obrázku je zobrazen průběh teploty s vyznačenou horní mezí (temp_limit_high) a hysterezí (hysteresis). V bodě 1 teplota překročí nastavenou mez. Od tohoto okamžiku se začne počítat zpoždění (time_delay) do vystavení alarmu. Protože v bodě 2 teplota klesla pod hodnotu (temp limit high) dříve než uplynula nastavená časová prodleva, alarm nebyl vystaven.

V bodě 3 teplota opět překročila nastavenou mez, a protože neklesla pod hodnotu (temp_limit_high) dříve než uplynulo zpoždění, byl v bodě 4 vystaven alarm. V tuto chvíli se vysílají varovné e-maily a trapy, pokud jsou nastaveny a vystavuje se příznak alarmu (tj. zda je alarm právě aktivní či nikoli), který můžete zjistit na WWW stránkách, nebo přes Modbus. Alarm

¹ pomocí telnetu není přístup ke všem konfiguračním položkám (nastavení displeje, výběr počítané veličiny), jejich změna viz. kapitola *8.4*

trval až do bodu 5, kdy teplota poklesla pod hodnotu nastavené hystereze (hysteresis). Pro ostatní měřené veličiny je princip vystavení alarmu analogický.

K vyslání alarmových zpráv dojde vždy při vzniku nového alarmu. Přístroj si pamatuje odeslané alarmové zprávy aktuálních alarmů, pokud má připojené napájení. V případě výpadku napájení nebo restartu monitorovacího systému (např. změnou konfigurace) dojde k novému vyhodnocení alarmových stavů a případnému opětovnému vyslání alarmových zpráv.

Parametry alarmu lze nastavit přes nastavovací program, Telnet, Modbus nebo SNMPv1 protokol. Podrobnější popis nastavení přes tyto protokoly naleznete v kapitolách věnovaných jednotlivým službám.

8.7.2. Binární veličiny

Binárními veličinami jsou myšleny stavy binárních vstupů a stavy relé. Přístroj umožňuje zaslat varovný e-mail (trap) při změně stavu binárního vstupu a při sepnutí nebo rozepnutí relé. U každé z binárních veličin je možné samostatně zvolit časové zpoždění (time_delay). Binární vstupy je možné pojmenovat (max. 14 znaků).

Na obrázku je uveden jednoduchý příklad. Binární vstup 1 je nastaven tak, aby byl vyslán e-mail při změně vstupu z hi do low (sestupná hrana). V bodě 1 byl sepnut binární vstup. Protože vstup byl rozepnut dříve, než proběhlo celé časové zpoždění (time_dealy) nebyl alarm vyvolán – bod 2. V době 3 byl opět sepnut vstup. V bodě 4 uplynulo nastavené časové zpoždění a byl odeslán varovný e-mail. Alarm trval až do bodu 5, kdy byl binární vstup rozepnut.

8.8. Tovární nastavení – Ethernetová část

Pomocí jednoduchého postupu je možné provést návrat k továrnímu nastavení **Ethernetového** rozhraní monitorovacího systému. Při tomto postupu je změněno veškeré nastavení Ethernetové části včetně IP adresy a masky podsítě (IP adresa se nastaví na: 192.168.1.213, maska: 255.255.255.0).

- 1. odpojte napájení
- 2. propojte zkratovací propojku v blízkosti Ethernetového konektoru přístroje.
- 3. zapněte napájení.
- 4. vyčkejte minimálně 15s
- 5. rozpojte/odstraňte zkratovací propojku

9. Komunikační protokoly

9.1. Modbus

Pro komunikaci s řídícími systémy obsahuje monitorovací systém podporu komunikačního protokolu Modbus TCP. K přístroji lze přistupovat přes TCP port 502. Číslo portu lze změnit. Přístroj vyřizuje vždy jen jeden požadavek.

Podporované Modbus příkazy:

Příkaz	Kód	Popis
Read multiple register(s)	0x03	Vyčte 16ti bitový(é) registr(y)
Write multiple register(s)	0x10	Zapiš 16ti bitový(é) registr(y)

Modbus registry monitorovacího systému:

Proměnná	Jednotka	Formát	Adresa [hex]	Adresa [dec]	Status
měřená teplota	°C, °F	Int*10	0x0031	49	r
měřená relativní vlhkost (RH)	%	Int*10	0x0032	50	r
měřená počítaná veličina (CV)	dle veličiny	Int*10	0x0033	51	r
měřený tlak	dle výběru	Int*X ²	0x0034	52	r
sériové číslo zařízení Hi	-	BCD	0x1035	4149	r
sériové číslo zařízení Lo	-	BCD	0x1036	4150	r
stav relé1 [0/1]	-	Int	0x003B	59	r
stav relé2 [0/1]	-	Int	0x003C	60	r
stav binárního vstupu 1 [0/1]	-	Int	0x003D	61	r
stav binárního vstupu 2 [0/1]	-	Int	0x003E	62	r
stav binárního vstupu 3 [0/1]	-	Int	0x003F	63	r
vzdálené ovládání relé 1 (viz níže) [0 – relé vypnuto, 1 – relé sepnuto]	-	Int	0x0042	66	r/w
vzdálené ovládání relé 2 (viz níže) [0 – relé vypnuto, 1 – relé sepnuto]	-	Int	0x0043	67	r/w
stav všech binárních vstupů (bit0, 1, 2)	-	Int	0x0008	8	r
stavové slovo (popis viz níže)	-	Int	0x0007	7	r
verze Firmware Hi	-	BCD	0x3001	12289	r
verze Firmware Lo	-	BCD	0x3002	12290	r
spodní mez teploty	°C, °F	Int*10	0x5001	20481	r/w
horní mez teploty	°C, °F	Int*10	0x5002	20482	r/w
spodní mez vlhkosti	%	Int*10	0x5003	20483	r/w
horní mez vlhkosti	%	Int*10	0x5004	20484	r/w
spodní mez CV	dle veličiny	Int*10	0x5005	20485	r/w
horní mez CV	dle veličiny	Int*10	0x5006	20486	r/w
teplotní hystereze	°C, °F	Int*10	0x5007	20487	r/w
teplotní zpoždění	S	uInt	0x5008	20488	r/w
RH hystereze	%	Int*10	0x5009	20489	r/w
RH zpoždění	S	uInt	0x500A	20490	r/w
CV hystereze	dle veličiny	Int*10	0x500B	20491	r/w

² hPa, mBar, mmHg, inH₂O, oz/in² jsou Int*10, inHg, kPa jsou Int*100, PSI jsou Int*1000

Proměnná	Jednotka	Formát	Adresa [hex]	Adresa [dec]	Status
CV zpoždění	S	uInt	0x500C	20492	r/w
stav teplotního alarmu	-	ASCII ^{a)}	0x500D	20493	r
stav RH alarmu	-	ASCII ^{a)}	0x500E	20494	r
stav CV alarmu	-	ASCII ^{a)}	0x500F	20495	r
spodní mez atmosférického tlaku	dle veličiny	Int*X	0x5010	20496	r/w
horní mez atmosférického tlaku	dle veličiny	Int*X	0x5011	20497	r/w
tlaková hystereze	dle veličiny	Int*X	0x5012	20498	r/w
stav tlakového alarmu	-	ASCII ^{a)}	0x5013	20499	r
tlakové zpoždění	S	uInt	0x5014	20500	r/w
stav alarmu relé RE1	-	ASCII ^{b)}	0x5015	20501	r
stav alarmu relé RE2	-	ASCII ^{b)}	0x5016	20502	r
stav alarmu bin. vstupu IN1	-	ASCII ^{c)}	0x5017	20503	r
stav alarmu bin. vstupu IN2	-	ASCII ^{c)}	0x5018	20504	r
stav alarmu bin. vstupu IN3	-	ASCII ^{c)}	0x5019	20505	r
zpoždění bin. vstupu IN1	S	uInt	0x501A	20506	r/w
zpoždění bin. vstupu IN2	S	uInt	0x501B	20507	r/w
zpoždění bin. vstupu IN3	S	uInt	0x501C	20508	r/w

Vysvětlivky:

- r registr je určen pro čtení
- w registr je určen pro zápis
- Int*10 registr je ve formátu integer*10.
- Int*X registr je ve formátu integer*10, int*100, int*1000 dle typu veličiny
- BCD registr je ve formátu BCD
- uInt registr je v rozsahu 0-65535
- ASCII znak, kde:
 - a) Stav teplotního, RH, tlakového alarmu a alarmu počítané veličiny:
 - no žádný alarm
 - lo veličina je nižší než nastavená mez
 - hi veličina je vyšší než nastavená mez
 - b) Stav alarmu relé:
 - op alarm není signalizován
 - cl relé je sepnuto, alarm je signalizován
 - c) Stav alarmu binárních vstupů:
 - no alarm není signalizován
 - lo alarm při sestupné hraně binárního signálu daného vstupu
 - hi alarm při vzestupné hrané binárního signálu
- Stavové slovo: vrací 16b hodnotu, kde význam jednotlivých bitů je následující:
 - Bit0 0/1 zkratovací propojka (Jumper) rozpojen/spoje
 - Bit3 0/1 vypnuto/sepnuto relé 1
 - Bit4 0/1 vypnuto/sepnuto relé 2
 - Bit5 0/1 aktuální stav interní akustické signalizace vyp/zap
 - Bit6 0/1 stav binárního vstupu 1
 - Bit7 0/1 stav binárního vstupu 2
 - Bit8 0/1 stav binárního vstupu 3
- Vzdálené ovládání relé: sepnutí/rozepnutí pomocí protokolu Modbus. Před vzdáleným ovládáním je nutné zvolit přiřazenou veličinu k relé (FAR0, FAR1).
 - FAR0 vzdálené ovládání relé, po restartu přístroje je relé vypnuto
 - FAR1 vzdálené ovládání relé, po restartu přístroje je relé zapnuto

• Konfigurace alarmových podmínek pro relé: bližší informace naleznete v dodatku manuálu. Dodatek je možné získat na stránkách: <u>www.cometsystem.cz</u>.

9.2. SMTP

Přístroj umožňuje v případě překročení nastavených mezí měřených veličin zaslat e-maily na max. tři adresy. Pro správnou funkci zasílání e-mailů je třeba nastavit SMTP server (IP adresa, autentizace, atd.).

V případě, že budou překročeny meze více sledovaných veličin, přijde pro každý vystavený alarm e-mail zvlášť. Jako odesílatel je zobrazena fiktivní adresa sensor@[IP adresa přístroje]. Adresu odesílatele je možné změnit. Na tento e-mail není možné odpovědět. V předmětu zprávy bude věta Alarm [popis přístroje], nebo Test message [popis přístroje].

U e-mailu je možné nastavit, zda mají být též zaslány informace o nastavení přístroje, nebo pouze aktuální měřené hodnoty.

9.3. SNMPv1

Pomocí SNMPv1 protokolu lze zjistit aktuálně měřené hodnoty, vyčíst a nastavit parametry alarmů. V případě aktivace alarmu může být odeslána varovná zpráva (trap) na zvolené adresy. Přes SNMPv1 protokol je také možné zobrazit historii posledních 100 naměřených hodnot.

Pro čtení a zápis komunikuje přístroj na UDP portu 161. Trapy jsou vysílány přes UDP port 162. Zasílání trapů je možné zakázat.

Zasílané trapy jsou tyto:

•	0/0	reset monitorovacího systému
•	1/0	testovací trap
•	1/1	chyba synchronizace času se SNTP serverem
•	1/2	firmware ethernetového rozhraní byl změněn
•	1/3 - 1/5	chyba SOAP protokolu
•	1/6 - 1/8	chyba zasílání e-mailu
•	1/9	změna nastavení přístroje pomocí SNMP nebo protokolu Modbus
•	6/3 - 6/55	hlášení o překročení/vrácení do normálu měřené veličiny

Ke správné funkci SNMPv1 serveru je potřeba do MIB klienta nahrát MIB tabulky Hx5xx.mib a případně též RFC-1213.mib. Cesta k monitorovacímu systému je poté:

iso.org.dod.internet.private.enterprises.comet.products.hx5xx

MIB tabulky naleznete na WWW stránkách <u>www.cometsystem.cz</u> nebo na instalačním CD v adresáři MIB. Heslo pro čtení je z výroby nastaveno na public, heslo pro zápis je private. Tyto hesla lze změnit.

Historie

Pomocí SNMPv1 protokolu si také můžete zobrazit historii posledních 100 naměřených hodnot, uložených v nastaveném časovém intervalu. Tento interval nastavíte pomocí nastavovacího programu. V případě, že hodnota ještě nebyla změřena, nebo byla detekována chyba, bude mít údaj hodnotu 9999, nebo -9999 v případě tlakových veličin. Historie se maže při každém restartu ethernetového rozhraní přístroje. Restart přístroje je proveden při každé změně nastavení z klávesnice, nebo pomocí konfiguračního programu TSensor.

9.4. WWW

Monitorovací systém podporuje zobrazení měřených hodnot, nastavených mezí, stavů alarmů a grafů historie na WWW stránkách. Uživatel má možnost napsat si vlastní webové stránky, které pak lze nahrát do přístroje. Podrobnosti naleznete v samostatném dokumentu na WWW výrobce. Adresa WWW stránky monitorovacího systému je shodná s IP adresou monitorovacího systému.

Příklad: Přístroj má přidělenu IP adresu 192.168.1.213. Do pole adresa v prohlížeči WWW stránek tedy stačí zadat http://192.168.1.213 a potvrdit klávesou Enter.

WWW stránky mají nastavenu automatickou dobu aktualizace z výroby na 60 sekund. Tato hodnota může být upravena v rozmezí 10-65535s. Pokud je zakázáno zobrazování WWW stránek, objeví se při pokusu o jejich zobrazení stránka se zprávou Acces denied.

9.5. SNTP

Monitorovací systém umožňuje synchronizaci času s SNTP serverem. Synchronizace času je nastavena na každých 8 hodin. V případě, že se synchronizace nepovede ve třech po sobě následujících hodinách, regulátor vyšle trap, varovný e-mail a Syslog zprávu.

9.6. Syslog protokol

Monitorovací systém umožňuje zasílat textové zprávy na zvolený syslog server (UDP protokol, port 514). Události, při kterých je zaslána zpráva jsou popsány v tabulce níže.

Událost	Text
restart zařízení	Device restart
testovací zpráva	Testing message
alarm nastaven	Alarm
chyba komunikace s SNTP	NTP connection error
zápis do regulátoru přes mdb, sntp	Settings changed
změna firmware	Firmware uploaded
ukončení alarmu	Clearing
chyba komunikace se SOAP servrem	SOAP
chyba zasílání e-mailu	EMAIL

9.7. SOAP

Monitorovací systém umožňuje zasílat SOAP zprávy s naměřenými údaji na uživatelem zadaný webový server v přednastaveném intervalu 10-65535 s. V případě, že přístroj nenaváže spojení s webovým serverem do doby vyslání další zprávy, vyšle se varovný trap 1/3 – 1/5 a Syslog zpráva. Soubor s příslušným XML schématem je ke stažení na www.cometsystem.cz/schemas/soapHx5xx.xsd.

Příklad jak nastavit zasílání SOAP zpráv:

Ano
<pre>muj.hosting.cz/soap/server.php</pre>
123.123.123.123
0 (nikdy nenastavujte na port 80)
80 (http servery standardně naslouchají na tomto portu)
10

10. Co dělat když...

10.1. Zapomněl jsem IP adresu monitorovacího systému

Zjištění IP adresy monitorovacího systému

IP adresa je z výroby nastavena na hodnotu 192.168.1.213. Pokud jste ji změnili a novou hodnotu IP adresy jste zapomněli, spusť te program TSensor a stiskněte tlačítko "Find device…". V novém okně se vypíší všechny dostupné zařízení.

10.2. Nemohu se připojit k monitorovacímu systému

V okně vyhledání zařízení se zobrazí pouze IP a MAC adresa

Další podrobnosti jsou označeny jako N/A. Tento problém se vyskytuje v případě, že je IP adresa přístroje nastavena do jiné sítě, než ve které je právě připojen.

V programu TSensor zvolte v okně Find device/Change IP address. Postupujte dle pokynů programu.

IP adresa monitorovacího systému se nezobrazí ani v okně pro nalezení zařízení

V menu programu TSensor zvolte v okně Find device/Help my device Wasn't found!. Postupujte dle pokynů programu.

Zjištění MAC adresy

MAC adresa je jedinečná adresa přístroje, kterou bude potřeba znát např. v případě, kdy je v síti zapojeno více monitorovacích systémů. Je napsána na štítku přístroje.

Monitorovací systém nelze nalézt ani po ručním zadání MAC adresy

V menu programu TSensor zvolte Find device/Help my device Wasn't found!. V okně Change Device IP address zaškrtněte Set IP to ARP only, do kolonky Device MAC address zadejte MAC adresu přístroje oddělenou pomlčkami (např. 00-20-4A-84-F0-80) a stiskněte tlačítko "Set IP".

Spusťte příkazovou řádku systému windows (Start/spustit) a zadejte telnet [nová IP_adresa] 9999. Dostanete se do textového režimu nastavení přístroje. (Např: telnet 192.168.1.202 9999). Stiskněte klávesu enter a 0 – Global Settings, nastavte IP adresu zařízení, zrušte IP adresu brány, počet bitů masky nastavte na 0. Zbytek potvrďte klávesou enter, až se dostanete do menu, kde volbou 9 – Save and Exit uložte nastavení. Poté dojde k uzavření spojení. Následně se již můžete k monitorovacímu systému připojit pomocí programu TSensor.

10.3. Nesvítí displej

- zkontrolujte, zda máte připojeno napájení
- odpojte a připojte napájení sledujte displej v okamžiku připojení napájení. Pokud se na 1 sec. rozsvítí všechny segmenty displeje a opět zhasnou, je displej vypnut softwarově.

10.4. Chybové stavy monitorovacího systému

Monitorovací systém při provozu neustále provádí kontrolu svého stavu, v případě zjištění chyby zobrazí na LCD displeji odpovídající chybový kód:

Error 0

Na prvním řádku displeje zobrazeno "Err0". Chyba kontrolního součtu CRC uloženého nastavení v paměti přístroje. K této chybě dochází při nedodržení postupu zápisu do paměti, zápisem na jiné adresy než je dovoleno, případně nastalo poškození kalibračních dat. V tomto stavu monitorovací systém neměmří a ani se nepočítají následné veličiny. Jedná se o závažnou chybu, pro její odstranění kontaktujte distributora přístroje.

Error 1

Měřená nebo vypočtená veličina kromě tlaku je nad horní hranicí povoleného rozsahu. Na řádku displeje určeného pro zobrazení veličiny je zobrazeno "Err1". Hodnota této veličiny čtená z přístroje je +999,9 . Tento stav nastane v případě že:

- Měřená teplota je větší než cca 600°C (tzn. velký neměřitelný odpor teplotního čidla, pravděpodobně je rozpojeno).
- Relativní vlhkost je větší než 100%, tzn. zničené čidlo vlhkosti, nebo nelze vlhkost spočítat (z důvodu chyby při měření teploty).
- Počítaná veličina výsledek nelze spočítat (chyba při měření teploty nebo relativní vlhkosti, případně překročen maximální rozsah).

Vyjímkou je při měření tlaku hodnota +999,9 hPa, která je hodnotou korektní.

Error 2

Na řádku displeje určeného pro zobrazení veličiny zobrazeno "Err2". Měřená nebo vypočtená veličina je pod spodní hranicí povoleného rozsahu nebo nastala chyba při měření tlaku. Hodnota této veličiny čtená z přístroje -999,9.

Tento stav nastane v případě že:

- Měřená teplota je menší než cca -210°C (tzn. malý odpor teplotního čidla, pravděpodobně zkrat).
- Relativní vlhkost je menší než 0%, tzn. poškození čidla pro měření relativní vlhkosti, nebo nelze vlhkost spočítat (z důvodu chyby při měření teploty).
- Měřená hodnota tlaku včetně započtené kompenzace na nadmořskou výšku je mimo rozsah 300 hPa až 1350 hPa případně došlo k poškození tlakového čidla. Zkontrolujte hodnotu korekce na nadmořskou výšku.
- Počítaná veličina výsledek nelze spočítat (chyba při měření teploty nebo relativní vlhkosti).

Error 3

Na prvním řádku displeje zobrazeno "Err3". Jde o chybu vnitřního A/D převodníku (převodník neodpovídá, pravděpodobně došlo k jeho poškození). Tato chyba neovlivňuje měření a výstup barometrického tlaku. Ostatní veličiny se neměří a ani se nepočítají následné veličiny. Hodnota této veličiny čtená z monitorovacího systému je -999,9. Jedná se o závažnou chybu, pro její odstranění kontaktujte distributora přístroje.

Error 4

Na displeji je zobrazeno "Err4". Jde o interní chybu při inicializaci tlakového čidla. V tomto stavu přístroj neměří barometrický tlak. Hodnota čtená z monitorovacího systému je -999,9. Pravděpodobně došlo k poškození tlakového čidla. Jedná se o závažnou chybu, pro její odstranění kontaktujte distributora přístroje.

Error 5, 6

K výstupnímu relé1, 2 není přiřazena korektní veličina – nastal problém s uloženou konfigurací. K této chybě dochází při nedodržení postupu zápisu do paměti přístroje, zápisem na jiné adresy než je dovoleno

Error 9

Zadáno chybné heslo (PASS) pro vstup do nastavovacího režimu.

11. Zobrazení na LCD displeji

°C, °F %RH hPa, PSI, inHg	zobrazený údaj je měřená teplota nebo chybový stav veličiny zobrazený údaj je měřená relativní vlhkost nebo chybový stav veličiny zobrazený údaj je měřená hodnota barometrického tlaku nebo chybový stav
	veličiny. Je-li pro měření tlaku zvolena jednotka mBar nebo oz/in² nebo
	mmHg nebo inH_2O a nebo kPa, je na LCD displeji zobrazen pouze číselný
	údaj bez odpovídající jednotky!
°C/°F DP	zobrazený údaj u tohoto symbolu je vypočtená teplota rosného bodu nebo chybový stav veličiny
g/m ³	zobrazený údaj u tohoto symbolu je vypočtená absolutní vlhkost nebo chybový stav veličiny
g/kg	zobrazený údaj u tohoto symbolu je vypočtená měrná vlhkost nebo směšovací poměr (podle nastavení regulátoru), případně chybový stav veličiny

Při zvoleném zobrazování vypočtené specifické entalpie se na LCD displeji zobrazuje pouze hodnota této veličiny bez odpovídající jednotky.

3 tato číslice svítí u levého okraje displeje, pokud je spojena zkratovací propojka

12. Preventivní údržba

Dbejte na doporučený interval kalibrace. Nenamáhejte přístroj mechanicky.

Doporučený interval kalibrace je pro:

- H4531R 2 roky
- H3531R 1 rok
- H7531R 1 rok

13. Technická specifikace

13.1. Technické parametry přístroje

13.1.1. Společné parametry	
Napájecí napětí:	12 V DC
Spotřeba:	cca 1 W
Napájecí konektor:	konektor souosý, průměr 5.5 x 2.1 mm, kladný pól uprostřed.
Interval měření:	1 s
Přepínání hodnot na displeji:	4 s (při zobrazování více než dvou hodnot)
Komunikace s počítačem:	Ethernetové připojení (konektor RJ-45)
Krytí:	IP30
Reléové výstupy:	
Počet:	2
Maximální spínané napětí:	50 V
Maximální spínaný proud:	2A
Maximální spínaný výkon:	60 VA
Výstupní kontakt není určen	pro přímé spínání síťového napětí!
(parametry kontaktu relé: ma	ax 220Vdc, 125Vac, 2A, 60 W, 62.5 VA)
Binární vstupy:	
Počet:	3
Signál pro binární vstup:	z beznapěťového kontaktu nebo dvouúrovňový napěťový
	signál
POZOR! Vstupy NEJSOU g	alvanicky odděleny!
Min. délka impulzu na binár	ním vstupu: 500 ms (kratší impulzy nemusí být zaznamenány)
Proud sepnutým kontaktem:	25 μΑ
Napětí na rozpojeném kontal	ktu: < 3,3 V
Maximální připojené napětí	na vstupu: +30 V
Nízká napěťová úroveň:	0 až +0,5 V
Vysoká napěťová úroveň:	+3,0 až +30 V
Kabel pro připojení vstupníc	ch signálů: stíněný, max. délka 10 m, nesmí být veden společně
se silovými rozvody.	
Napájecí napětí pro napájení exte	rních senzorů a detektorů (celková zátěž max. 5 W):
+12 V/ max. 400 mA	
+5V / max. 500 mA	

EMC: ČSN EN 61326-1, ČSN EN 55011, ČSN EN 55022

13.1.2. Přesnost, rozsah a rozlišení monitorovacích systémů Teplota:

	H3531R	H4531R	H7531R
přesnost	± 0,4 °C	± 0,2 °C	± 0,4 °C
rozsah	-30 až +105 °C	-200 až +600 °C	-30 až +105 °C
	včetně kabelu k sondě		včetně kabelu k sondě
rozlišení	0,1 °C	0,1 °C	0,1 °C

Relativní vlhkost:

	H3531R	H4531R	H7531R
přesnost	± 2,5 %RH v rozsahu		$\pm 2,5$ %RH v rozsahu
	5 až 95 %RH při 23 °C	-	5 až 95 %RH při 23 °C
rozsah	0 až 100 %RH, teplotně		0 až 100 %RH, teplotně
	kompenzováno	-	kompenzováno
rozlišení	0,1 %RH	-	0,1 %RH

Barometrický tlak H7531R:

jednotka	hPa, mBar	PSI	mmHg	inHg	inH ₂ O	oz/in ²	kPa
rozsah	600	8,70	450,0	17,72	240,9	139,2	60,00
měření	1100	15,95	825,1	32,48	441,6	255,3	110,00
přesnost							
T=23 °C	±1,3	±0,02	±1,0	±0,04	±0,5	±0,3	±0,13
0≤T≤40°C	±1,5	±0,02	±1,1	±0,04	±0,6	±0,3	±0,15
jinak	±2,0	±0,03	±1,5	±0,06	±0,8	±0,5	±0,20

Doba odezvy s krytkou čidel s nerezovou tkaninou (F5200B) a s bronzovou krytkou (F0000 volitelně), proudění vzduchu cca 1 m/s:

teplota: vlhkost: $t90 < 6 \min (teplotní skok 20 °C (36 °F))$

tlak:

t90 < 30 s (vlhkostní skok 65 %RH, konstantní teplota) $t90 < 44s^3$

Rozsah měření teploty a vlhkosti je omezen níže uvedeným grafem!

³ Dobu odezvy lze změnit. Podrobnosti naleznete v souboru Manuál pro kalibraci.pdf, který je součástí instalace uživatelského programu TSensor.

13.1.3. Veličiny počítané z měřené teploty a vlhkosti

Monitorovací systém umožňuje zvolit si jednu z těchto veličin.

Absolutní vlhkost

Přesnost: Rozsah: ±1,5 g/m³ při okolní teplotě T < 25°C, podrobně viz graf 0 až 400 g/m³

Měrná vlhkosť⁴

Přesnost:	$\pm 2,1$ g/kg při okolní teplotě T < 35 °C (95 °F)
Rozsah:	0 až 550 g/kg

Směšovací poměr⁴

Přesnost:	$\pm 2,2$ g/kg při okolní teplotě T < 35 °C (95 °F)
Rozsah:	0 až 995 g/kg

Specifická enthalpie⁴

Přesnost: $\pm 4 \text{ kJ/kg}$ při okolní teplotě T < 25 °C (77 °F)</th>Rozsah:0 až 995 kJ/kg

13.2. Provozní podmínky

Rozsah provozní teploty a vlhkosti:
elektronika -30 až +80 °C (-22 až 176 °F), 0 až 100 % RH (bez kondenzace)
sonda H3531R, H7531R: -30 až +105 °C (-22 až 221 °F) včetně kabelu k sondě,
0 až 100 % RH
externí sonda k H4531R má rozsah dle typu použité sondy
Při teplotách nad 70°C (158 °F) v okolí elektroniky doporučujeme displej vypnout.

- Stanovení vnějších charakteristik dle ČSN 33-2000-3: prostředí normální dle přílohy NM s těmito upřesněními: AE1, AN1, AR1, BE1
- **Zakázané manipulace:** není dovoleno snímat krytku senzorů a provádět činnosti vedoucí k jakémukoli mechanickému poškození senzorů pod krytkou. Senzory teploty a vlhkosti nesmí přijít do přímého styku s vodou nebo jinými kapalinami.

Rozměry: viz Rozměrový náčrt

Hmotnost: H4531R cca 1025g H3531R/1m sonda, H7531R/1m sonda cca 1090g H3531R/2m sonda, H7531R/2m sonda cca 1100g H3531R/4m sonda, H7531R/4m sonda cca 1130g

13.3. Vyřazení z provozu

Monitorovací systém odpojíme a zajistíme jeho likvidaci podle platné legislativy pro zacházení s elektroodpady.

13.4. Technická podpora a servis přístroje

Způsob justování a kalibrace zařízení je popsán v samostatném souboru "*Manuál pro kalibraci.pdf*", který je součástí instalace programu TSensor.

Technickou podporu a servis zajišťuje distributor tohoto přístroje. Kontakt na něj je uveden v záručním listu, dodaném s přístrojem. V případě potřeby můžete také využít diskusní fórum na adrese: <u>http://www.forum.cometsystem.cz/</u>. Bližší informace jakým způsobem zasílat příspěvky do diskusního fóra se dozvíte na: <u>http://www.cometsystem.cz/forum.htm</u>.

⁴ Hodnota této veličiny závisí na atmosférickém tlaku. Při výpočtu se používá konstantní hodnota, která je uložena v paměti přístroje. Od výroby je přednastavena na 1013hPa. Tuto hodnotu je možné změnit pomocí uživatelského programu.

14. Příloha A

15. Příloha B

Zde jsou uvedeny základní údaje o připojení detektorů dodávaných jako volitelné příslušenství k binárním vstupům monitorovacího systému. Při instalací detektorů věnujte pozornost přiloženým návodům.

Detektor výpadku síťového napětí SP008

je určen k signalizaci přítomnosti napětí v zásuvce střídavého síťového rozvodu. Detektor je vybaven optickou signalizací (zelená LED).

Záplavový detektor LD-12

slouží pro indikaci zaplavení prostor (sklep, koupelna, ...) vodou.

Optický detektor kouře SD-280

slouží k detekci požárního nebezpečí v interiéru obytných nebo obchodních budov.

Poznámka: Připojovací kabely detektorů musí být umístěny co možná nejdále od potenciálních zdrojů rušení. Stínění se připojuje na odpovídající svorku regulátoru a nesmí se již dále spojovat s žádnými jinými obvody ani jinak uzemňovat.